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Summary

• Significant advances in high energy density physics
have occurred over the last six years

• The ability to make precise measurements in new
regimes allows comparion with models

– Hugoniot equation-of-state

– Materials science at high pressure

– Hydrodynamics

– Radiation transport

• New facilities will expand access to high energy
density regimes



• Energy density and pressure have the same units

• ~ 1 Mbar is the energy density required to compress
material

Regimes of high energy density are typically
associated with material energy density > 1 MBar

~  few MBar
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Outline

• Significant advances in high energy density physics
– Hugoniot equation-of-state

– Materials science at high pressure

– Hydrodynamics

– Radiation transport and atomic physics

• Future directions



Uncertainties in the equation-of-state of H and He
have a large impact on models of the giant planets

EOS

Guillot, Science, 286, 72 (1999)

• Models of Jupiter must match a limited set of
measurements
– Gravitational field (radius, mass)
– Surface conditions (T, luminosity, spectra)

• Hydrogen EOS affects models
– Density structure
– Core

• 1st order phase transition
to metallic hydrogen?
affects thermal evolution,
He abundance, magnetic
field

Core :  solid or molten?



Accurate models of hydrogen EOS are difficult in
these regimes

Degeneracy
• kT ~ E (Fermi) =p2/2me,
• Particle correlations become
important
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Lasers generate high pressure shocks through
ablation of material

EOS

• Potential to get ultra high pressures P ~ I 2/3

• Potential to measure 2 quantities directly

– Particle velocity up and shock velocity us

– Absolute - no reference material EOS is required

• Making a precise measurement is difficult
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Shock temperature measurements in deuterium
led to a model that predicted a softer EOS

ρρρρ

New dissociation model required
explain to gas gun data
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NRL Reflected Shock Experiments are Consistent
with High Compressibility EOS Models

NRL
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D2 EOS data obtained on Z suggest a stiff
response in agreement with Sesame and ab-

initio models

EOS
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• Only way to get high pressure Hugoniot EOS



Measurements show a continuous transition from insulating
to metallic state

•Models of Jupiter and giant planets are being reevaluated

EOS

Nellis, PRB 59(1999); Celliers, PRL 84 (2000)
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A new area of high energy density physics is the study
of matter in the solid state under high pressure

Fe Isentrope

• Earth’s core contains solid
Fe surrounded by liquid Fe

• Fe phase <-> earth’s
magnetic field

Anderson, O. L. Science 278 (1997)

Material science

Compression along the isentropic can access high pressure solid states

• High-pressure phase boundaries and
structure ?

• Mechanical properties at high
pressure?
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Material response to compression in solids is
complex and occurs on different scales

Material science
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Strength is characterized by a material’s
resistance to dislocation transport

Shear stress

Shear stress

M.A. Meyers, Dynamic Behavior of Materials  

Flow stress, YT 
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(Wiley, 1994), pp. 358-361

The physics mechanisms underlying solid-state deformation can be 
categorized according to dislocation velocity or strain rate

Three categories of deformation are relevant :
1.  Thermally activated dislocation transport
2.  Dislocation glide resisted by phonon drag
3.  Dislocation “speed limit”
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Deformation ~ strain rate ~ ave. disloc. vel.

Dislocation density

Mechanical properties



We need data at high pressures and varying strain
rates to compare with models of strength

Soderlind & Moriarty, Phys. Rev. B 57, 10340 (1998)

• SG semiempirical model with
data at low pressures and strain
rates

• Strain rate independent

Steinberg-Guinan constitutive model
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It is difficult to get above ~ 1 Mbar isentropically

• Laser heated DACs get to ~
3 Mbars, 4000 K in small
samples

• Isotherm, then isochor
• Thermodynamic properties

(P, T) + structure on a
synchrotron

• High explosives get to ~ 1
Mbars for strength
measurements

• Isentropic

High Explosive

lens

detonator

Barnes, JAP, 45, (1974); Rayevsky and Lebedev



Methods have been demonstrated to quasi-
isentropically compress in the solid state to ~ 1 Mbar
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Measurement along an isentrope provides
continuous equation-of-state data
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In comparison, a shock Hugoniot
measurement provides 1 EOS datum

per experiment
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• The solid to solid (bcc-hcp) phase change was measured in Fe on Z

• Modeling allowed transition time to be determined

                     ττττ  ~  40 ns

A two wave structure is a signal of phase
transition

PressureP

t

Hall, C. A. (2000). Physics of Plasmas 7(5 PT2): 2069-2075.
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Si responds uniaxially on a ns time
scale to compression 2x over elastic
limit

Shocked Bragg

Unshocked Bragg

X-ray source

Laser
Unshocked Laue

Shocked Laue
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Kalantar, D. H., et al. (1999). Review of Scientific Instruments 7 0(1 PT2): 629-632.

Loveridge-Smith, et al. (2001). Physical Review Letters 8 6(11): 2349-2352.
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X-ray diffraction has been demonstrated to
dynamically measure the lattice structure
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The 3D lattice structure can be dynamically measured
using a novel diffraction geometry

• Time-resolved X-ray source allows 3D lattice structure to be measured
under dynamic conditions

laser

Atomistic

(004)

Shocked Static 

(113)

(3-13)

(-1-15)

Kalantar, Submitted to Phys Plas



Measurements of X-ray absorption near an edge provides
information on density and temperature in a solid

Ti K-edge

A
b

so
rp
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n

• EXAFS - interference of ejected electron
waves with neighbors

• Modulation ~ sin(2kR) => density

• Amplitude of oscillations ~

• σσσσ2 is the Debye- Waller factor

• σσσσ2 ~ f(T/ρρρρ5/2)

EXAFS technique developed on a synchrotron is
now being applied on a laser

Density dependent

Temperature
dependent

Photon energy (keV)

Atomistic



EXAFS provides a way to measure T to 20-30%
for isentropically compressed targets

• A capsule is imploded on the Omega laser to provide a continuum source
for EXAFS diagnosis of a target
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Recovery of compressed samples and metallurgical analysis show
identical features to those shocked on a gas gun

laser cotton

Si crystal

thin mylar

A filled tube slow down and capture samples 

—Laser shocked samples have identical features to samples shocked
on gas guns at the same pressure
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Grain structure

Strength in Al was inferred from measurements of
Rayleigh-Taylor instability growth on Nova at ~ 1.4
MBars
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The RT growth is nearly fluid at early times,
but it is suppressed at later times

Suggestive of data by Rayevsky/Lebedev

High pressure strain causes localized heating and softening in shear
bands; bulk Al flows as fluid due to deformation in these localized
regions

As heat dissipates the metal regains bulk solid strength and
continued growth is inhibited
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The tools are in place to perform quantitative
experiments at high isentropic pressures

Material science
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Outline

• Significant advances in high energy density physics
– Hugoniot equation-of-state

– Materials science at high pressure

– Hydrodynamics

– Radiation transport and atomic physics

• Future directions



Hydrodynamic instabilities may play a role in
understanding data from supernova 1987a

SN1987a
“Onion skin” model

Shock

The Richtmyer-Meshkov
instability occurs at an interface
impulsively accelerated by a
shock  How does one test complex dynamical phenomena?
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Hydrodynamics can be tested in dynamical
models with scaled experimental testbeds

• The dynamical behavior of a system described by Eulers’ Equations

is invariant under any scale transformation that preserves
(h/ τ)√√√√(ρ /P) ~ Mach #

* Ryotov et. al, Ap. J, 518, p. 821 (1999) 
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Practical implementation of scaling requires
precise control over experimental conditions

1. Tailored pressure history

3. Compressible materials
=> Ionized

(h/ τ)√√√√(ρ /P)
2. Scaled initial conditions
=> Solid materials easier
Geometry

Laser Beams
=> Pressure (t )

Kane, ApJ, 365 (2000)
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High Mach number RM experiments measured
reduced growth due to shock proximity

Hydrodynamics

Laser driven shock tube Mach ~ 10

X-ray radiography

Glendinning et. al., submitted to PRL

VISAR

shock

Hig
h ρρρρ

Low
 ρρρρ

pressure

• Incompressible models (Sadot,
1998) predict that spike tip
moves faster than shock

• Precise experiments can be
done on laser driven shock
tubes and compared to
analytical models
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Hydrodynamically scaled SN instability
experiments have been performed on Omega

2D simulation of SN1987A
Muller, Fryxell, and Arnett (1991)

Robey, H. F., et al. (2001). Physics of Plasmas 8(5 PT2): 2446-2453. Kane, J., et al. (2000). ApJS 127(2): 365-369.

Remington, B. A., R. P. Drake, et al. (2000). Physics of Plasmas 7(5 PT2): 1641-1652.

Physics was piecewise separated and scaled experiments were
compared to modeling

Hydrodynamics
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Large scale physics can be tested, but what
about small scales?

• Turbulence will affect
mixing
– Linear RM ~ t

– Turbulent RM ~ t.5-1
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Simulations of supernova explosions do not appear to be turbulent

SN simulations of
Re = 1010 hydrodynamics

Data of a
 Re = 104 flow

Re = inertial/viscous = Lv/viscosity



A  universal “mixing transition” at Reynolds
number ~ 2 x104 was proposed - physics is same

afterwards

Driving, diagnosing and modeling the transition to turbulence
in compressible high Reynolds number flows is the next

challenge
P.E. Dimotakis, J. Fluid  Mech. 409, 69 (2000); Zhou et al., submitted, Phys. Rev. E (2002); Robey et al., Phys. Plasmas, in press

For dynamical systems, it is proposed to generate the scales needed,
time > (L/v) x 100 Re-.5



Measurements of turbulent instability growth have
been performed in planar and convergent geometries

• Convergent experiments in cylindrical geometry
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Planar geometry:
Turbulent RT, RM  experiments: accuracy to 20 -
50% in model parameters
New facilities will allow higher accuracies and more

detailed measurements of turbulent growth



These testbeds for large and mid-scale size
hydrodynamics are well established

High Mach number supersonic jets were
compared to codes

laser

X-ray radiograph

jet shock

laser

Radiographic images at different
views in space and time
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J. M. Foster, et. al,Phys Plas, 9 (5 PT2), 2251-2263 (2002).

Hydrodynamics

Experiments have started on Z, where
target sizes are O(10x larger)



Outline

• Significant advances in high energy density physics
– Hugoniot equation-of-state

– Materials science at high pressure

– Hydrodynamics

– Radiation transport and atomic physics

• Future directions



Interaction of of intense soft X-rays with matter is
important in a host of astrophysical phenomena

Radiation

Radiation penetration from a
supernova into interstellar
medium - ionization fronts

Radiation from accretion material in
X-ray binaries - photoionized
plasmas

Cepheid variables -
opacities of stellar envelopes

Formation of astrophysical jets -
radiative cooling



Local Energy Density:

Radiation energy density ~

Energy Transport:

When is radiation important at high energy density
conditions?
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==Tr

At T = 300 eV,  1g/cc, v = sound speed => ~ 2

Important in most stellar atmospheres:  sun ~ 5 x 104

Radiation
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• Diffusion assumes radiation ~ isotropic

• Particles (Monte Carlo)

Several techniques are available to solve
radiation transport problems

requires large optical depth
e.g deep inside stars

Radiation transports behind a wall

Photons are tracked as particles

Signal/Noise ~ (# of particles/cell)1/2

Radiation does not transport behind a wall

=> big computers

Tr

Tr

Radiation

λλλλmfp
Radiation from a far away Supernova

illuminating a protostar is non-isotropic



Data from experiments can now quantitatively
evaluate radiation transport methods

time (ns)time (ns)

Data Simulations

C. A. Back, to be submitted to Phys. Plas.
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No disk
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Radiation fills in

Radiation

Advanced radiation transport algorithms like Implicit Monte
Carlo agrees better than diffusion in Omega experiments



X-ray astrophysics now needs a detailed
understanding of photoionized plasmas

High radiation fields, low density so 3 body
recombination
ξ ~ 4ππππI/n ~Irradiance/electron density
ξ >> 1 for regimes of interest

Radiation



Understanding atomic physics in photoionized
plasmas allows intrepretation of astrophysical

spectra

Radiation

Te = 30 eV

Z = 16.5 ± .5 in comparison with
6 models

The first experimental benchmark for
X-ray photoionized plasma models is
available,  ζζζζ ~ 20



Universities worldwide are engaged in research in
high energy density physics

Atomic physicsU of Wisconsin

Nuclear physicsMIT

Supernova hydrodynamicsGeorge Mason

Astrophysical jets, EOSUniv of
Rochester

Material DynamicsU of Texas

Radiative blast wavesUC Davis

Laboratory astrophysicsU of Maryland

Radiative blast wavesRice University

Laboratory astrophysicsU of Arizona

Z-pinch plasmasU of Reno

X-ray interferometry, laboratory
astrophysics

U of Colorado

High density plasmasCornell

Precompressed EOS, X-ray
diffraction

Berkeley

Supernova remnants, radiation
transport

U of Michigan

Materials dynamicsUCSD

Research areaUniversity

EOS water, foamsUniv Milan

Radiation transport, Z-pinchesImperial College

Laboratory  astrophysicsOsaka
University

EOS of foamsUniv of British
Columbia

Research areaUniversity

Material DynamicsOxford
University

EOS of foamsUniv of Essex

EOS of AuUniversity of
Milan-Biocca

Opacity, EOS of waterEcole
Polytechnique
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• Significant advances in high energy density physics
– Hugoniot equation-of-state

– Materials science at high pressure
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Access to new regimes of EOS space will allow
investigations of new physics

Multishocks, precompression or isentropic
compression will access new regimes

At high ~ Gbar Hugoniot pressures
available on NIF, ionization of

shells affects predictions

Al Hugoniot

Future
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Very high pressures will be able to be accessed
isentropically for materials science studies

Future
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• Isentropic pressures exceeding 10 Mbar
for condensed matter studies on ZR

• Flyer plate impact pressures of several
tens of Mbar for precise Hugoniot
experiments

NIF will reach > 20 MBars and
measure strain rate and grain

size effects



New regimes will allow measurements closer to
astrophysical conditions

Future

NIF extendsNIF & LMJ extends experiments
closer to X-ray binary conditions

Photo-ionized Nebulae Fe opacity impacts Solar models

NIF and LMJ extends range of
temperatures for opacity measurements

to > 300 eV



New class of petawatt lasers have potential for
accessing and probing high energy density conditions

• High intensity electric and magnetic fields are generated
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m ce

== 1I ~ 1018 W/cm2

I ~ 1019 W/cm2  Mev Bremstrahlung

I ~ 1020 W/cm2 Mev protons, 400 MG, pair production

Nuclear reactions I ~ 1024 W/cm2



High photon energy and proton probing of high
energy density conditions is possible

• 20-100 keV Ka can be used to measure grain size and phase of
solid material at high compression

Monoenergetic
colimated x-rays

Petawatt
backlighter

Laue diffraction

Large grainsSmall grains

Borshesi, Phys Plas, 9, 2002



High photon energy and proton probing of high
energy density conditions is possible

• 20-100 keV Ka can be used to measure grain size and phase of
solid material at high compression

Monoenergetic
colimated x-rays

Petawatt
backlighter

Laue diffraction

Large grainsSmall grains

Borshesi, Phys Plas, 9, 2002 Electric fields

•Proton imaging:



The capability to independently compress and heat can
expand the regimes for EOS and opacity measurements

Ion and electron beams can
potentially heat materials uniformly

to high energy density

Petawatt

Long pulse lasers are used to
precompress a material

laser

laser



In burning capsules, thermonuclear reaction rates
in stars may be studied

Future
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Summary

• Significant advances in high energy density physics
have occurred over the last six years

• The ability to make precise measurements in new
regimes allows comparion with models

– Hugoniot equation-of-state

– Materials science at high pressure

– Hydrodynamics

– Radiation transport

• New facilities will expand access to high energy
density regimes



Conclusion

Recommendation from NRC report

Connecting Quarks with the Cosmos:
Eleven Science Questions for the New Century

“Discern the physical principles that govern extreme
astrophysical environments through the laboratory

study of high energy density physics… The field is in
its infancy… ”


